4 Replies Latest reply on Feb 18, 2016 11:24 PM by Abhiroop

    Edison and MPU9150


      I have trouble with IntelEdison.

      When I test with Uno, Uno can read the sensor and the output is Okay but When I use the IntelEdisonArduino with same source code, it can read the sensor value but output is diffrent with Uno.

      Between Uno and Edison have  same value of Accelerometer and compass. but only the Gyro value is diffrent. Edison's output is garbage value.

      please help me!






      Here is source code



      // MPU-9150 Accelerometer + Gyro + Compass + Temperature
      // -----------------------------
      // By arduino.cc user "frtrobotik" (Tobias H체bner)
      // July 2013
      //      first version
      // Open Source / Public Domain
      // Using Arduino 1.0.1
      // It will not work with an older version,
      // since Wire.endTransmission() uses a parameter
      // to hold or release the I2C bus.
      // Documentation:
      // - The InvenSense documents:
      //   - "MPU-9150 Product Specification Revision 4.0",
      //     PS-MPU-9150A.pdf
      //   - "MPU-9150 Register Map and Descriptions Revision 4.0",
      //     RM-MPU-9150A-00.pdf
      //   - "MPU-9150 9-Axis Evaluation Board User Guide"
      //     AN-MPU-9150EVB-00.pdf
      // The accuracy is 16-bits.
      // Some parts are copied by the MPU-6050 Playground page.
      // playground.arduino.cc/Main/MPU-6050
      // There are more Registervalues. Here are only the most
      // nessecary ones to get started with this sensor.

      #include <Wire.h>

      // Register names according to the datasheet.
      // According to the InvenSense document
      // "MPU-9150 Register Map and Descriptions Revision 4.0",

      #define MPU9150_SELF_TEST_X        0x0D   // R/W
      #define MPU9150_SELF_TEST_Y        0x0E   // R/W
      #define MPU9150_SELF_TEST_X        0x0F   // R/W
      #define MPU9150_SELF_TEST_A        0x10   // R/W
      #define MPU9150_SMPLRT_DIV         0x19   // R/W
      #define MPU9150_CONFIG             0x1A   // R/W
      #define MPU9150_GYRO_CONFIG        0x1B   // R/W
      #define MPU9150_ACCEL_CONFIG       0x1C   // R/W
      #define MPU9150_FF_THR             0x1D   // R/W
      #define MPU9150_FF_DUR             0x1E   // R/W
      #define MPU9150_MOT_THR            0x1F   // R/W
      #define MPU9150_MOT_DUR            0x20   // R/W
      #define MPU9150_ZRMOT_THR          0x21   // R/W
      #define MPU9150_ZRMOT_DUR          0x22   // R/W
      #define MPU9150_FIFO_EN            0x23   // R/W
      #define MPU9150_I2C_MST_CTRL       0x24   // R/W
      #define MPU9150_I2C_SLV0_ADDR      0x25   // R/W
      #define MPU9150_I2C_SLV0_REG       0x26   // R/W
      #define MPU9150_I2C_SLV0_CTRL      0x27   // R/W
      #define MPU9150_I2C_SLV1_ADDR      0x28   // R/W
      #define MPU9150_I2C_SLV1_REG       0x29   // R/W
      #define MPU9150_I2C_SLV1_CTRL      0x2A   // R/W
      #define MPU9150_I2C_SLV2_ADDR      0x2B   // R/W
      #define MPU9150_I2C_SLV2_REG       0x2C   // R/W
      #define MPU9150_I2C_SLV2_CTRL      0x2D   // R/W
      #define MPU9150_I2C_SLV3_ADDR      0x2E   // R/W
      #define MPU9150_I2C_SLV3_REG       0x2F   // R/W
      #define MPU9150_I2C_SLV3_CTRL      0x30   // R/W
      #define MPU9150_I2C_SLV4_ADDR      0x31   // R/W
      #define MPU9150_I2C_SLV4_REG       0x32   // R/W
      #define MPU9150_I2C_SLV4_DO        0x33   // R/W
      #define MPU9150_I2C_SLV4_CTRL      0x34   // R/W
      #define MPU9150_I2C_SLV4_DI        0x35   // R 
      #define MPU9150_I2C_MST_STATUS     0x36   // R
      #define MPU9150_INT_PIN_CFG        0x37   // R/W
      #define MPU9150_INT_ENABLE         0x38   // R/W
      #define MPU9150_INT_STATUS         0x3A   // R 
      #define MPU9150_ACCEL_XOUT_H       0x3B   // R 
      #define MPU9150_ACCEL_XOUT_L       0x3C   // R 
      #define MPU9150_ACCEL_YOUT_H       0x3D   // R 
      #define MPU9150_ACCEL_YOUT_L       0x3E   // R 
      #define MPU9150_ACCEL_ZOUT_H       0x3F   // R 
      #define MPU9150_ACCEL_ZOUT_L       0x40   // R 
      #define MPU9150_TEMP_OUT_H         0x41   // R 
      #define MPU9150_TEMP_OUT_L         0x42   // R 
      #define MPU9150_GYRO_XOUT_H        0x43   // R 
      #define MPU9150_GYRO_XOUT_L        0x44   // R 
      #define MPU9150_GYRO_YOUT_H        0x45   // R 
      #define MPU9150_GYRO_YOUT_L        0x46   // R 
      #define MPU9150_GYRO_ZOUT_H        0x47   // R 
      #define MPU9150_GYRO_ZOUT_L        0x48   // R 
      #define MPU9150_EXT_SENS_DATA_00   0x49   // R 
      #define MPU9150_EXT_SENS_DATA_01   0x4A   // R 
      #define MPU9150_EXT_SENS_DATA_02   0x4B   // R 
      #define MPU9150_EXT_SENS_DATA_03   0x4C   // R 
      #define MPU9150_EXT_SENS_DATA_04   0x4D   // R 
      #define MPU9150_EXT_SENS_DATA_05   0x4E   // R 
      #define MPU9150_EXT_SENS_DATA_06   0x4F   // R 
      #define MPU9150_EXT_SENS_DATA_07   0x50   // R 
      #define MPU9150_EXT_SENS_DATA_08   0x51   // R 
      #define MPU9150_EXT_SENS_DATA_09   0x52   // R 
      #define MPU9150_EXT_SENS_DATA_10   0x53   // R 
      #define MPU9150_EXT_SENS_DATA_11   0x54   // R 
      #define MPU9150_EXT_SENS_DATA_12   0x55   // R 
      #define MPU9150_EXT_SENS_DATA_13   0x56   // R 
      #define MPU9150_EXT_SENS_DATA_14   0x57   // R 
      #define MPU9150_EXT_SENS_DATA_15   0x58   // R 
      #define MPU9150_EXT_SENS_DATA_16   0x59   // R 
      #define MPU9150_EXT_SENS_DATA_17   0x5A   // R 
      #define MPU9150_EXT_SENS_DATA_18   0x5B   // R 
      #define MPU9150_EXT_SENS_DATA_19   0x5C   // R 
      #define MPU9150_EXT_SENS_DATA_20   0x5D   // R 
      #define MPU9150_EXT_SENS_DATA_21   0x5E   // R 
      #define MPU9150_EXT_SENS_DATA_22   0x5F   // R 
      #define MPU9150_EXT_SENS_DATA_23   0x60   // R 
      #define MPU9150_MOT_DETECT_STATUS  0x61   // R 
      #define MPU9150_I2C_SLV0_DO        0x63   // R/W
      #define MPU9150_I2C_SLV1_DO        0x64   // R/W
      #define MPU9150_I2C_SLV2_DO        0x65   // R/W
      #define MPU9150_I2C_SLV3_DO        0x66   // R/W
      #define MPU9150_I2C_MST_DELAY_CTRL 0x67   // R/W
      #define MPU9150_SIGNAL_PATH_RESET  0x68   // R/W
      #define MPU9150_MOT_DETECT_CTRL    0x69   // R/W
      #define MPU9150_USER_CTRL          0x6A   // R/W
      #define MPU9150_PWR_MGMT_1         0x6B   // R/W
      #define MPU9150_PWR_MGMT_2         0x6C   // R/W
      #define MPU9150_FIFO_COUNTH        0x72   // R/W
      #define MPU9150_FIFO_COUNTL        0x73   // R/W
      #define MPU9150_FIFO_R_W           0x74   // R/W
      #define MPU9150_WHO_AM_I           0x75   // R

      //MPU9150 Compass
      #define MPU9150_CMPS_XOUT_L        0x4A   // R
      #define MPU9150_CMPS_XOUT_H        0x4B   // R
      #define MPU9150_CMPS_YOUT_L        0x4C   // R
      #define MPU9150_CMPS_YOUT_H        0x4D   // R
      #define MPU9150_CMPS_ZOUT_L        0x4E   // R
      #define MPU9150_CMPS_ZOUT_H        0x4F   // R

      // I2C address 0x69 could be 0x68 depends on your wiring.
      int MPU9150_I2C_ADDRESS = 0x68;

      //Variables where our values can be stored
      int mag[3];
      int accl[3];
      int gyro[3];
      int temp;

      double roll,pitch,yaw;
      uint8_t i2cData[14]; // Buffer for I2C data

      void setup()
        // Initialize the Serial Bus for printing data.

        // Initialize the 'Wire' class for the I2C-bus.

        i2cData[0] = 7; // Set the sample rate to 1000Hz - 8kHz/(7+1) = 1000Hz
        i2cData[1] = 0x00; // Disable FSYNC and set 260 Hz Acc filtering, 256 Hz Gyro filtering, 8 KHz sampling
        i2cData[2] = 0x00; // Set Gyro Full Scale Range to ±250deg/s
        i2cData[3] = 0x00; // Set Accelerometer Full Scale Range to ±2g
        Serial.println( MPU9150_writeSensor(0x19,i2cData,4,false) ); // Write to all four registers at once
        Serial.println( MPU9150_writeSensor(0x6B,0x01) ); // PLL with X axis gyroscope reference and disable sleep mode
        // Clear the 'sleep' bit to start the sensor.
        Serial.println( MPU9150_writeSensor(MPU9150_PWR_MGMT_1, 0) );
        Serial.println("setup compass");



      void loop()
        // Print all sensor values which the sensor provides
        // Formated all values as x, y, and z in order for
        // Compass, Gyro, Acceleration. The First value is
        // the temperature.
         mag[0] = MPU9150_readSensor_print(MPU9150_CMPS_XOUT_L,MPU9150_CMPS_XOUT_H);
         mag[1] = MPU9150_readSensor_print(MPU9150_CMPS_YOUT_L,MPU9150_CMPS_YOUT_H);
         mag[2] = MPU9150_readSensor_print(MPU9150_CMPS_ZOUT_L,MPU9150_CMPS_ZOUT_H);
         accl[0] = MPU9150_readSensor(MPU9150_ACCEL_XOUT_L,MPU9150_ACCEL_XOUT_H);
         accl[1] = MPU9150_readSensor(MPU9150_ACCEL_YOUT_L,MPU9150_ACCEL_YOUT_H);
         accl[2] = MPU9150_readSensor(MPU9150_ACCEL_ZOUT_L,MPU9150_ACCEL_ZOUT_H);
         //double dT = ( (double) MPU9150_readSensor(MPU9150_TEMP_OUT_L,MPU9150_TEMP_OUT_H) + 12412.0) / 340.0;
         gyro[0] = MPU9150_readSensor(MPU9150_GYRO_XOUT_L,MPU9150_GYRO_XOUT_H);
         gyro[1] = MPU9150_readSensor(MPU9150_GYRO_YOUT_L,MPU9150_GYRO_YOUT_H);
         gyro[2] = MPU9150_readSensor(MPU9150_GYRO_ZOUT_L,MPU9150_GYRO_ZOUT_H);

          roll = atan2(accl[2],accl[1]) * 180 / PI;
          pitch = atan2(accl[2],accl[0]) * 180 / PI;
          yaw = atan2(mag[1],mag[0]) * 180 / PI;

          Serial.print("   ");

          Serial.print("   ");

          Serial.print("   ");

          Serial.print("   ");
          Serial.print("   ");


      //Thank you to pansenti for setup code.
      //I will documented this one later.
      void MPU9150_setupCompass(){
        int temp1,temp2,temp3,temp4;
        MPU9150_I2C_ADDRESS = 0x0C;      //change Adress to Compass

        Serial.println( MPU9150_writeSensor(0x0A, 0x00) ); //PowerDownMode
        Serial.println( MPU9150_writeSensor(0x0A, 0x0F) ); //SelfTest
        Serial.println( MPU9150_writeSensor(0x0A, 0x00) ); //PowerDownMode
        MPU9150_I2C_ADDRESS = 0x68;      //change Adress to MPU
        Serial.println( MPU9150_writeSensor(0x24, 0x40) ); //Wait for Data at Slave0
        Serial.println( MPU9150_writeSensor(0x25, 0x8C) ); //Set i2c address at slave0 at 0x0C
        Serial.println( MPU9150_writeSensor(0x26, 0x02) ); //Set where reading at slave 0 starts
        Serial.println( MPU9150_writeSensor(0x27, 0x88) ); //set offset at start reading and enable
        Serial.println( MPU9150_writeSensor(0x28, 0x0C) ); //set i2c address at slv1 at 0x0C
        Serial.println( MPU9150_writeSensor(0x29, 0x0A) ); //Set where reading at slave 1 starts
        Serial.println( MPU9150_writeSensor(0x2A, 0x81) ); //Enable at set length to 1
        Serial.println( MPU9150_writeSensor(0x64, 0x01) ); //overvride register
        Serial.println( MPU9150_writeSensor(0x67, 0x03) ); //set delay rate
        Serial.println( MPU9150_writeSensor(0x01, 0x80) );
        Serial.println( MPU9150_writeSensor(0x34, 0x04) ); //set i2c slv4 delay
        Serial.println( MPU9150_writeSensor(0x64, 0x00) ); //override register
        Serial.println( MPU9150_writeSensor(0x6A, 0x00) ); //clear usr setting
        Serial.println( MPU9150_writeSensor(0x64, 0x01) ); //override register
        Serial.println( MPU9150_writeSensor(0x6A, 0x20) ); //enable master i2c mode
        Serial.println( MPU9150_writeSensor(0x34, 0x13) ); //disable slv4

        Serial.println("setup complete");

      ///////// I2C functions to get easier all values ///////////

      int MPU9150_readSensor(int addrL, int addrH){

        Wire.requestFrom(MPU9150_I2C_ADDRESS, 1, true);
        byte L = Wire.read();


        Wire.requestFrom(MPU9150_I2C_ADDRESS, 1, true);
        byte H = Wire.read();

        return (int16_t)((H<<8)+L);

      int MPU9150_readSensor_print(int addrL, int addrH){
        Serial.print("  ");
        Serial.print( Wire.write(addrL) );//1
        Serial.print("  ");
        Serial.print( Wire.endTransmission(false) );//0
        Serial.print("  ");

        Serial.print( Wire.requestFrom(MPU9150_I2C_ADDRESS, 1, true) );//1
        Serial.print("  ");
        byte L = Wire.read();
        Serial.print(L);  //값...
        Serial.print("  ");
        Serial.print("  ");
        Serial.print( Wire.write(addrH) );
        Serial.print("  ");
        Serial.print( Wire.endTransmission(false) );
        Serial.print("  ");
        Serial.print( Wire.requestFrom(MPU9150_I2C_ADDRESS, 1, true) );
        Serial.print("  ");
        byte H = Wire.read();
        return (int16_t)((H<<8)+L);

      int MPU9150_readSensor(int addr){

        Wire.requestFrom(MPU9150_I2C_ADDRESS, 1, true);
        return Wire.read();

      int MPU9150_writeSensor(int addr,int data){
        return Wire.endTransmission(true);

      int MPU9150_writeSensor(int addr,uint8_t* data,uint8_t length, bool sendStop){
        return Wire.endTransmission(sendStop);// Returns 0 on success


        • 1. Re: Edison and MPU9150

          Hi SukIHong,


          I've found people reporting problems with the value read from the MPU9150. Unfortunately I don’t have the sensor to test it with my Edison, but I recommend you to check the following sites. You will find some issues with the MPU9150 that might be similar to yours and you will also find suggestions and workarounds that might be helpful for you:


          On the other hand, in the following repo there are examples for the MPU9150 using Python, C++ and JavaScript. I suggest you to check those examples. You might get different results with them: upm/examples at master · intel-iot-devkit/upm · GitHub




          • 2. Re: Edison and MPU9150

            Hi, I am facing the same issue.
            Trying to read the accel + gyro + mag values from the MPU 9150 sensor.
            The accel + gyro data is correct, but the magnetometer data looks completely wrong.

            The sensor die has 2 separate chips; one housing the accel + gyro and the other the mag.
            The accel + gyro readings are correct because the I2c comm between the master and the first chip is correct.
            The I2C between the master and the second, magnetometer chip (which is accessed by bypassing the first accel + gyro chip), results in a NACK from the sensor.
            I have a code(pasted below) that works accurately on an Arduino, but the exact same code fails to connect to the magnetometer on the Edison.


            void setup()
              // wake up
            void loop()
            // bypass main accel + gyro chip
                // mag enable
              // read mag data
              Wire.requestFrom(0x0C, 6, true);
              int i = 0;
            while (Wire.available())
            val[i++] = Wire.read();
            //loop delay
            val[i++] = Wire.read();




            The resulting data is just mx = 0;     my = 0;     mz = 0;    for the entire time.


            For some reason, I feel that the driving current (or the lack thereof) is to blame for the NACK received from the mag chip.

            The pull-ups on the Arduino are different from those on the Edison-arduino extension board.

            But, after having tried out the 4 programmable pull-up options on the Edison, the results are still the same.


            I have also tried the 3 solutions suggested in the the previous answer, but to no avail.

            • 3. Re: Edison and MPU9150

              Hello Madhura,


              Unfortunately I don't have the shield to test it, so it's hard to know what the issue might be. Did you try running the examples from the GitHub repo? You might get different results with them:





              • 4. Re: Edison and MPU9150



                I have the same issue.
                I tried accessing the magnetometer on the chip via:
                1. Bypass Mode of the MPU6050 (which connects the main chip i2c line to the magnetometer i2c bus i.e aux-i2c, internally)

                2. Direct connection to the magnetometer on the aux-i2c bus (also provided as a I/O pin)


                I tried the above approaches using direct i2c commands (using the mraa/i2c functions) as well as the UPM library for the sensor (which essentially works with mraa/i2c). Both returned a I2C error for slave NACK. Basically, the Edison doesn't seem to establish a valid i2c connection with the magnetometer.


                Any leads on how to solve this?