1 2 3 Previous Next

Wired Ethernet

214 posts

At Interop Las Vegas in April 2015, Intel took part in the NBASE-T Alliance public multi-vendor interoperability demonstration. Carl Wilson, Product Marketing Engineer, walks through the demo to show how it leveraged Intel's next generation single-chip 10GBASE-T controller supporting the NBASE-T intermediate speeds of 2.5Gbps and 5Gbps.

 

The demonstration showed NBASE-T™ technology deployed in the three key components of an enterprise network: wireless access points, switches and client devices. Specific products on display included NBASE-T technology-enabled wiring closet/campus LAN switches, 802.11ac Wave 2 Wireless LAN Access Points (WLAN APs), Network Interface Controller (NIC) in Personal Computer (PC), Network-Attached Storage (NAS), Field-Programmable Gate Array (FPGA), network and embedded processors and Power-over-Ethernet (PoE) chipsets. Connectivity between these products were based on a wide range of cabling configurations including Cat5e, Cat6 and Cat6A, with lengths extending up to 100m. For more information, check out the NBASE-T Alliance press release.

 

Intel Network Division is pleased to deliver Release 20.0 (codenamed FVL3), a package that contains a new NVM images and Software that will provide customers with numerous new features and benefits when using the Intel® Ethernet XL710 and X710 controllers and adapters.

 

Highlights of Release 20.0 include:  

  • QSFP Configuration Utility (QCU) to allow customers migrate from 4x10 to true 40 GbE
  • Intel NVM Update Package (NUP), allowing customers to update older NVM’s in the field
  • Support for Intel® Ethernet Modular Optical Cables(MOCS)  and Active Optical Cables 
  • XLAUI backplane support for our valued embedded customers
  • Major performance and maintenance improvements

  

Release 20.0  Download links:

NVM Update Utility for Intel® Ethernet Converged Network Adapter XL710 

NVM Update Package (NUP) must be used with Intel® Network Connections software release 20.0.  This package intended to be used to update existing LOM/Embedded NVM’s, which are using the default dev starter NVM’s and can be used to update Intel® Ethernet Controller XL710 based Network Adapter Cards. This will update the NVM version to 4.42.

 

Intel® Network Connections software release 20.0 CD download

This Zip file contains all of the Intel® Ethernet network drivers and software for currently supported versions of Windows*, Linux* and FreeBSD* for most Intel® Ethernet adapters as found on the CD that

 

Administrative Tools for Intel® Network Adapters 

Includes QSFP Configuration Utility. This requires the NVM already be updated to NVM version 4.42.

 

Intel® Ethernet Connections Boot Utility, Preboot images, and EFI Drivers

Includes updated Preboot images and EFI drivers.

 

Please note Intel recommends updating the NVM, SW driver and pre-boot images together as they are tightly coupled in XL710.  For more details see the documentation provided at the link above for the NVM Update Utility.

 

Thanks,

Matt Eszenyi, Intel® XL710 (Fortville) PME

 

 

by David Fair, Product Marketing, Networking Division, Intel Corporation

 

Odd title for a networking article, don’t you think?  It’s odd for a couple of reasons, but reasons that reveal the vibrancy of Ethernet.  For four decades, Ethernet advanced on a “powers-of-ten” model from an initial 10 Mbps to 100 to 1GbE to 10GbE.  Part of why that worked was that the ratified IEEE Ethernet speeds kept well ahead of most market requirements.  Moving an entire Ethernet ecosystem to a new speed is expensive for everyone.  The “powers-of-ten” model helped control those costs.

 

What changed?  Well, my theory is that Ethernet simply got too successful for the powers-of-ten model.  By that I mean that the volumes got large enough for some specific requirements at more fine-grained speeds to warrant infrastructure upgrades to support those speeds. 

 

It is the rapid growth of wireless access points and increases in their speed specifically that creates the problem leading to a desire Next Generation Enterprise Access BASE-T.   Not in the data center but rather in the office.  Most have built out a wireless infrastructure with CAT 5e or 6 in the ceilings connecting wireless access points at 1GbE, in addition to connecting wired desktops and workstations.  But the latest wireless spec, IEEE 802.11ac can drive bandwidth back on the wire well beyond 1GbE.  And some of those desktops and workstations may be chomping at the bit as well, so to speak, to go faster than 1GbE.  The problem is that the next “powers of 10” solution from the IEEE, 10GBASE-T won’t work on CAT 5e and will work on CAT 6 only to 55 meters.

 

As often happens in these situations, alliances establish themselves to build momentum to influence the IEEE to consider their proposal.  In this case, there are now two such groups calling themselves the “NBASE-T Alliance” and the “MGBASE-T Alliance” respectively.  Both are proposing intermediate “step-down” speeds of 2.5 Mbps and 5 Mbps.

 

To learn more about 2.5G/5G technology and standardization related efforts, please join the Ethernet Alliance for its upcoming “Ethernet 104: Introduction to 2.5G/5G BASE-T Ethernet” webinar on Thursday, May 21, 2015, at 10am PDT. Additional information is available, and registration is now open at http://bit.ly/Ethernet104 .

From Dawn Moore, General Manager of the Networking Division, read her latest blog on 10GbE in the Intel® Xeon® processor D product family: The Intel® Ethernet 10GbE revolution that was 12 years in the making

Read two recent blogs from Dawn Moore, General Manager of the Networking Division.

 

Intel's demo with Cisco at Mobile World Congress illustrates the latest in network virtualization overlays and Ethernet’s role in the data center.

 

Intel® Ethernet demos at the OCP Summit shows the performance and low-latency needed for Rack Scale Architecture data centers.

It has been a while since I’ve made a blog posting.  That is because I was moved away from doing Virtualization and Manageability technologies to work on Intel Switching products.  Last week I was fortunate to be at the Open Compute Summit in San Jose, CA.

 

I was only able to attend one actual session while there, because the rest of my time was spent in the Intel® booth presenting a technology preview of Intel’s upcoming Red Rock Canyon switch product and the accompanying quick video.  It was exciting to be able to demonstrate and discuss Red Rock Canyon with people.

 

We made a quick video of me doing my chat, not my most fluid discussion however it gets the point across and luckily the pretty demo GUI distracts from my ugly mug. 

Red Rock Canyon will be available in Q3 of this year.  At that time I will have more videos, blogs papers etc. Until then, I hope this video will give you some insight.

 

From Dawn Moore, General Manager of the Networking Division, read her latest blog on the future of Ethernet and the market developments that will ensure it remains ubiquitous.

https://communities.intel.com/community/itpeernetwork/datastack/blog/2015/03/01/ubiquitous-ethernet-poised-for-greater-success-in-the-future

The industry continues to advance the iWARP specification for RDMA over Ethernet, first ratified by the Internet Engineering Task Force (IETF) in 2007.  This article in Network World, “iWARP Update Advances RDMA over Ethernet for Data Center and Cloud Networks,” co-authored by Chelsio Communications and Intel, describes two new features that have been added to help software developers of RDMA code by aligning iWARP more tightly with RDMA technologies based on the InfiniBand network and transport, i.e., InfiniBand itself and RoCE.  By bringing these technologies into alignment, we realize the promise that the application developer need not concern herself with which of these is the underlying network technology -- RDMA will "just work" on all.  - David Fair

 

 

Certainly one of the miracles of technology is that Ethernet continues to be a fast growing technology 40 years after its initial definition.  That was May 23, 1973 when Bob Metcalf wrote his memo to his Xerox PARC managers proposing “Ethernet.”  To put things in perspective, 1973 was the year a signed ceasefire ended the Vietnam War.  The U.S. Supreme Court issued their Roe v. Wade decision. Pink Floyd released “Dark Side of the Moon.”  In New York City, Motorola made the first handheld mobile phone call (and, no, it would not fit in your pocket).   1973 was four years before the first Apple II computer became available, and eight years before the launch of the first IBM PC. In 1973, all consumer music was analog: vinyl LPs and tape.  It would be nine more years before consumer digital audio arrived in the form of the compact disc—which ironically has long since been eclipsed by Ethernet packets as the primary way digital audio gets to consumers.

  motophone.jpg

The key reason for Ethernet’s longevity, imho, is its uncanny, Darwinian ability to evolve to adapt to ever-changing technology landscapes.  A tome could be written about the many technological challenges to Ethernet and its evolutionary response, but I want to focus here on just one of these: the emergence of multi-core processors in the first decade of this century.  The problem Bob Metcalf was trying to solve was how to get packets of data from computers to computers, and, of course, to Xerox laser printers.  But multi-core challenges that paradigm because Ethernet’s job as Bob defined it is done when it gets to a computer’s processor, before it gets to the correct core in that processor waiting to consume that data.

 

Intel developed a technology to help address that problem, and we call it “Intel® Ethernet Flow Director.”  We implemented it in all of Intel’s most current 10GbE and 40GbE controllers. What Intel® Ethernet Flow Director does in-a-nutshell is establish an affinity between a flow of Ethernet traffic and the specific core in a processor waiting to consume that traffic. I encourage you to watch a two and a half minute video explanation of how Intel® Ethernet Flow Director works.  If that, as I hope, just whets your appetite to learn more about this Intel technology, we also have a white paper that delves into deeper details with an illustration of what Intel® Ethernet Flow Director does for a “network stress test” application like Memcached.  For that, click here.  We hope you find both the video and white paper enjoyable and illuminating.

 

David Fair

I was going through folders on my laptop in an effort to free up some space when I came upon a presentation I was working on before my transition to new responsibilities here within the Intel Networking Division.  The presentation was going to be the basis for a new video related to a blog and white paper I did regarding network performance for BMCs.

    

Seemed a shame to let all that work go to waste, so I finished up the presentation and quickly recorded a video.

 

The paper discussing this topic is located at https://www-ssl.intel.com/content/www/us/en/ethernet-controllers/nc-si-overview-and-performance-notes.html

 

And the video can be found at https://www.youtube.com/watch?v=-fA7_3-UlYY&list=UUAug6KFsT_2tC1zLwe2h6uA

    

Hope it is of use.

    

Thanx,

 

 

Patrick

David Fair, Unified Networking Mktg Mgr, Intel Networking Division

 

WARP was on display at IDF14 in multiple contexts.  If you’re not familiar with iWARP, it is an enhancement to Ethernet based on an IETF standard that delivers Remote Direct Memory Access (RDMA).  In a nutshell, RDMA allows an application to read or write a block of data from or to the memory space of another application that can be in another virtual machine or even a server on the other side of the planet.  It delivers high bandwidth and low latency by bypassing the kernel of system software and avoiding interrupts and making extra copies of data.  A secondary benefit of kernel bypass is reduced CPU utilization, which is particularly important in cloud deployments.  More information about iWARP has recently been posted to Intel’s website if you’d like to dig deeper.

 

Intel is planning to incorporate iWARP technology in future server chipsets and systems-on-a-chip (SOCs).  To emphasize our commitment and show how far along we are, Intel showed a demo using the RTL from that future chipset in FPGAs running Windows* Server 2012 SMB Direct and doing a boot and virtual machine migration over iWARP.  Naturally it was slow – about 1 Gbps - since it was FPGA-based, but Intel demonstrated that our iWARP design is already very far along and robust.  (That’s Julie Cummings, the engineer who built the demo, in the photo with me.)

 

Jim Pinkerton, Windows Server Architect, from Microsoft joined me in a Poster Chat on iWARP and Microsoft’s SMB Direct technology, which scans the network for RDMA-capable resources and uses RDMA pathways to automatically accelerate SMB-aware applications.  No new software and no system configuration changes are required for system administrators to take advantage of iWARP.

 

 

Jim Pinkerton also co-taught the “Virtualizing the Network to Enable a Software Defined Infrastructure” session with Brian Johnson of Intel’s Networking Division.  Jim presented specific iWARP performance results in that session that Microsoft has measured with SMB Direct.

 

Lastly, the NVMe (Non-Volatile Memory Express) community demonstrated “remote NVMe” made possible by iWARP.  NVMe is a specification for efficient communication to non-volatile memory like flash over PCI Express.  NVMe is many times faster than SATA or SAS, but like those technologies, targets local communication with storage devices.  iWARP makes it possible to securely and efficiently access NVM across an Ethernet network.  The demo showed remote access occurring with the same bandwidth (~550k IOPS) with a latency penalty of less than 10 µs.

Intel is supporting iWARP because it is layered on top of the TCP/IP industry standards.  iWARP goes anywhere the internet goes and does it with all the benefits of TCP/IP, including reliable delivery and congestion management. iWARP works with all existing switches and routers and requires no special datacenter configurations to work. Intel believes the future is bright for iWARP.

Hi, my name is Craig Pierce and I support Intel’s Unified Networking Program.

 

As an Applications Engineer with Intel’s Networking Division, I work in Folsom, California and am responsible for end-user customer support for “Storage over Network” on Intel Ethernet products. This includes functionality support for Fiber-Channel over Ethernet (FCoE), iSCSI, and Network File Systems (NFS) for secondary storage attachment as wells as SAN Boot, which includes iSCSI and FCoE legacy boot.

 

In 2014, I've begun to test as many configurations and options for secondary and tertiary storage and for storage-boot using as many operating systems as my schedule allows. I plan to post configurations, videos, and use-cases that I am evaluating in my lab.

 

There are several reasons I am doing this: my job is enablement and support for Intel products, I want to document storage and storage-boot setup processes for Intel® Converged Network Adaptors, and the more research I do, the better I can support my customers.

 

I may entertain some recommendations from the community; however, I have a pretty good list of items that I want to test.  If I get issues from the communities, I will always point you towards following a standardized process with your OEM.

 

In my lab, I have both 1 Gigabit and 10 Gigabit network switches with some limited Layer 3. I plan to setup a multi-routed environment with SAN access to frames that will supply my targets.

 

Here’s an example of the kind of content I want to share with the community.  This is a quick connect guide for FCoE on Windows and I have a Linux version following soon.  

 

http://www.intel.com/content/www/us/en/ethernet-controllers/fcoe-windows-server-quick-connect-guide.html

 

Currently, I am putting an iSCSI boot video together that shows SAN-Boot with VLANs and primary/secondary ports. I will post the link to the video in this blog as soon as it’s ready.

 

The next steps will be to walk through other supported operating systems and post the results. 

 

Talk to you soon,

Craig

dougb

Intel® Ethernet and Security

Posted by dougb Apr 16, 2014

There has been a very famous tale of a security issue in the news lately.  Others have done a great job explaining it, so I won't even dare to even try.   Some people are concerned that Intel® Ethernet products might be at risk.  Coming to this blog is a great first step, but there is a much better place for you to look.  Intel® Product Security Center.  It lists all the advisories that Intel is currently tracking.  A great resource, it has clear version and update suggestions for products that have issues.  It even has a mailing list option so you can get updates when they come out.  The one in the news is listed as Multiple Intel Software Products and API Services impacted by CVE-2014-0160, and !spoilers alert! Intel Ethernet doesn't have any products listed.  If we did have any security related issues, you would find them there.  I strongly suggest you add the Intel® Product Security Center to your bookmarks, and sign up for the e-mail.  Vigilance is the first step to better security, and Intel tries to make it easier for busy IT professionals to stay informed.

The following blog post was originally published on NetApp’s SANbytes blog to commemorate the launch of the NetApp X1120A-R6 10-BASE-T adapter – the latest milestone in the long and fruitful relationship between the companies. We’re reposting it here because it's a good overview of the state of the art in Ethernet storage networking.

 

When two leaders like Intel and NetApp work together on storage networking, the industry should expect big things. Intel® Xeon® processor-based storage systems from NetApp, for example, are delivering new levels of performance for customers around the world who are trying to keep up with the ever-increasing amounts of data generated by their users and applications. Intel and NetApp have also collaborated on many engineering efforts to improve performance of storage protocols including iSCSI and NFS.

 

This week’s announcement of the NetApp X1120A-R6 10GBASE-T adapter, which is based on the Intel® Ethernet Controller X540, is another significant development for Ethernet-based storage. Virtualization and converged data and storage networking have been key drivers of the migration to 10 Gigabit Ethernet (10GbE), and NetApp was an early adopter of the technology. Today, many applications are optimized for 10GbE. VMware vSphere, for example,
allows vMotion (live migration) events to use up to eight Gigabits of bandwidth and move up to eight virtual machines simultaneously. These actions rely on high-bandwidth connections to network storage systems.

 

10 Gigabit connectivity in these systems isn’t new, so why is the NetApp X1120A-R6 adapter special? For starters, it’s the first 10GBASE-T adapter supported by NetApp storage systems (including the FAS3200, FAS6200,
and the new FAS8000 lines), and we believe 10GBASE-T will have a huge appeal to data center managers who are looking to upgrade from one Gigabit Ethernet to a higher-speed network. 

 

There are a few key reasons for this:

 

  • 10GBASE-T allows IT to use their existing Category 6/6A twisted-pair copper cabling. And for new installations, this cabling is far more cost-effective than other options.
  • Distance flexibility: 10GBASE-T supports distances up to 100 meters and can be field-terminated, making it a great choice for short or long connections in the data center.
  • Backwards-compatibility: Support for one Gigabit Ethernet (1000GBASE-T) allows for easy, phased migrations to 10GbE.

The NetApp X1120A-R6 adapter gives data center operators a new option for cost-effective and flexible high-performance networking. For the first time, they’ll be able to use 10GBASE-T to connect from server to switch
to storage system.

 

Intel and NetApp have worked together to drive the market transition to 10GbE unified networking for many years, and this announcement is another example of our commitment to bringing these technologies to our customers.

 

If you’d like to learn more about the benefits of 10GBASE-T, here are a couple of great resources:

 

 

Follow me on Twitter @Connected_Brian 

Intel is pleased to announce the Intel® Ethernet Server Adapter X520 Series for the Open Compute Project.

 

Available in both single and dual-port SKU’s, these adapters deliver a proven, reliable solution for deployments of Ethernet for high bandwidth, low cost, 10GbE network connections.  Increased I/O performance with Intel® Data Direct I/O Technology (DDIO) and support for intelligent offloads make this adapter a perfect match for scaling performance on Intel® Xeon® processor E5/E7 based servers.

 

The best-selling Intel® Ethernet Converged Network Adapter X520 Series is known for its high performance, low latency, reliability, and flexibility.  The addition of the Intel® Ethernet Server Adapter X520 Series for Open Compute Project to the family delivers all the X520 capabilities, in an Open Compute Project (OCP) form factor.  The Open Compute Project (OCP) is a Facebook* initiative to openly share custom data center designs to improve both cost and energy efficiency across the industry.  The OCP uses a minimalist approach to system design thereby reducing complexity and cost, allowing data centers to scale out more effectively.  By publishing the designs and specifications of this low-power, low-cost hardware, it can reduce the cost of infrastructure for businesses large and small.

 

For more information on the Intel® Ethernet Server Adapter X520 for Open Compute Project, visit:  http://www.intel.com/content/www/us/en/network-adapters/converged-network-adapters/server-adapter-x520-da1-da2-for-ocp-brief.html

 

For more general information on the Open Compute Project initiative, visit:  http://opencompute.org/

Filter Blog

By date:
By tag: